Chorter

Fractions and Mixed Numbers

Lessons

- **3.1** Adding Unlike Fractions
- **3.2** Subtracting Unlike Fractions
- **3.3** Fractions, Mixed Numbers, and Division Expressions
- **3.4** Expressing Fractions, Division Expressions, and Mixed Numbers as Decimals

- **3.5** Adding Mixed Numbers
- **3.6** Subtracting Mixed Numbers
- **3.7** Real-World Problems: Fractions and Mixed Numbers

bar, and ask the 3 of you to share the remaining granola bars, how many granola bars will you each get?

Add and subtract unlike fractions and mixed numbers by rewriting them with like denominators.

Recall Prior Knowledge

Like fractions have the same denominator.

Liam had $\frac{2}{5}$ of a cracker.

 $\frac{2}{5}$ and $\frac{3}{5}$ are like fractions.

They have the same denominator, 5.

Walt had $\frac{3}{5}$ of a cracker.

Unlike fractions have different denominators.

In one box, $\frac{3}{4}$ of a pizza was left.

In another box, $\frac{2}{5}$ of a pizza was left.

 $\frac{3}{4}$ and $\frac{2}{5}$ are unlike fractions.

hey have different denominators, 4 and 5.

A mixed number consists of a whole number and a fraction.

1 whole

1 whole

number

1 half

Finding equivalent fractions

number

$$\begin{array}{ccc}
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

Expressing fractions in simplest form

$$\begin{array}{ccc}
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

Divide the numerator $\frac{8}{12} = \frac{2}{3}$ and denominator by their greatest common factor.

Representing fractions on a number line

Identifying prime and composite numbers

pand 5 are prime numbers. They have no factors other than 1 and hemselves.

$$2 = 2 \times 1$$

$$5 = 5 \times 1$$

8 and 24 are composite numbers. They have factors other than 1 and themselves.

$$8 = 1 \times 8$$
$$= 2 \times 4$$

$$24 = 1 \times 24$$

= 2 × 12
= 3 × 8
= 4 × 6

Expressing improper fractions as mixed numbers

Express $\frac{5}{3}$ as a mixed number.

Using models:

$$\frac{5}{6}$$
 = 5 thirds

$$= 3 \text{ thirds} + 2 \text{ thirds}$$

$$=\frac{3}{3}+\frac{2}{3}$$

$$= 1 + \frac{2}{3}$$

$$=1\frac{2}{3}$$

Using division:

$$\frac{5}{3}$$
 means 5 divided by 3.

number of wholes _____1 number of

Divide the numerator by the denominator.

$$5 \div 3 = 1 R 2$$

This is the division rule.

There is 1 whole and 2 thirds in $\frac{5}{3}$. $\frac{5}{3} = 1\frac{2}{3}$

$$\frac{5}{3} = 1\frac{2}{3}$$

Adding and subtracting like fractions

$$\frac{2}{9} + \frac{4}{9} = \frac{6}{9}$$
$$= \frac{2}{3}$$

$$\frac{9}{10} - \frac{3}{10} = \frac{6}{10} = \frac{3}{5}$$

Adding and subtracting unlike fractions

$$\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6}$$
$$= \frac{5}{6}$$

$$\frac{1}{3} + \frac{4}{9} + \frac{2}{3} = \frac{3}{9} + \frac{4}{9} + \frac{6}{9}$$
$$= \frac{13}{9}$$
$$= 1\frac{4}{9}$$

$$\frac{\frac{3}{4} - \frac{5}{12} = \frac{9}{12} - \frac{5}{12}}{= \frac{4}{12}}$$
$$= \frac{1}{3}$$

$$1 - \frac{2}{9} - \frac{7}{18} = \frac{18}{18} - \frac{4}{18} - \frac{7}{18}$$
$$= \frac{7}{18}$$

$$2 - \frac{4}{5} - \frac{9}{10} = \frac{20}{10} - \frac{8}{10} - \frac{9}{10}$$
$$= \frac{3}{10}$$

Reading and writing tenths and hundredths in

decimal and fractional forms

 $\frac{1}{10}$ (one tenth) is 0.1 in decimal form. You read 0.1 as one tenth.

(one hundredth) is 0.01 in decimal form. You read 0.01 as one hundredth.

Expressing fractions as decimals

Express $\frac{9}{10}$ as a decimal.

$$\frac{1}{10} = 1 \text{ tenth}$$

= 0.1

= 0.9

Express $\frac{17}{100}$ as a decimal.

$$10 \text{ hundredths} = 1 \text{ tenth}$$

$$\frac{17}{100} = 17$$
 hundredths
1 tenth 7 hundredths

$$\frac{17}{100} = 1 \text{ tenth 7 hundredths}$$
$$= 0.17$$

V Quick Check

the like fractions in each set.

$$\frac{3}{4}$$
, $\frac{1}{2}$, $\frac{2}{5}$, $\frac{1}{4}$

$$\frac{5}{6}$$
, $\frac{5}{9}$, $\frac{9}{10}$, $\frac{7}{9}$

Find the unlike fractions in each set.

$$\frac{1}{8}$$
, $\frac{2}{7}$, $\frac{3}{8}$, $\frac{1}{2}$

$$\frac{5}{9}$$
, $\frac{5}{12}$, $\frac{1}{10}$, $\frac{7}{9}$

Find the number of wholes and parts that are shaded. Then write the mixed number.

Complete to show the equivalent fractions.

$$\frac{3}{5} = \frac{3}{10}$$

$$\frac{15}{20} = \frac{1}{4}$$

Express each fraction in simplest form.

$$\frac{8}{10} =$$

$$0 \frac{12}{16} =$$

Find the equivalent fractions which are missing from the number line. Give your answers in simplest form.

Find the prime numbers.

the composite numbers.

ress the improper fraction as a mixed number.

$$\frac{8}{3}$$
 = thirds
= thirds+ thirds

+

= +

__

ress each improper fraction as a mixed number. the division rule.

$$\frac{13}{4} =$$

$$\frac{19}{5} =$$

or subtract. Express the sum or difference in simplest form.

$$\frac{15}{8} + \frac{1}{8} =$$

$$\frac{3}{10} - \frac{1}{10} =$$

$$\frac{1}{2} + \frac{3}{8} =$$

$$\frac{2}{3} + \frac{3}{4} + \frac{10}{12} =$$

$$\left| \frac{4}{5} - \frac{3}{10} \right| =$$

$$\frac{6}{7} - \frac{11}{14} =$$

$$11 - \frac{1}{6} - \frac{11}{18} =$$

$$3 - \frac{1}{3} - \frac{2}{9} =$$

ress each fraction as a decimal.

$$\frac{3}{100}$$